首页 | 本学科首页   官方微博 | 高级检索  
     


Generalized Laplacian approximations in Bayesian inference
Authors:John S. J. HSU
Abstract:This paper presents a new Laplacian approximation to the posterior density of η = g(θ). It has a simpler analytical form than that described by Leonard et al. (1989). The approximation derived by Leonard et al. requires a conditional information matrix Rη to be positive definite for every fixed η. However, in many cases, not all Rη are positive definite. In such cases, the computations of their approximations fail, since the approximation cannot be normalized. However, the new approximation may be modified so that the corresponding conditional information matrix can be made positive definite for every fixed η. In addition, a Bayesian procedure for contingency-table model checking is provided. An example of cross-classification between the educational level of a wife and fertility-planning status of couples is used for explanation. Various Laplacian approximations are computed and compared in this example and in an example of public school expenditures in the context of Bayesian analysis of the multiparameter Fisher-Behrens problem.
Keywords:Marginalization  contingency table  quasiindependence model  Fisher-Behrens problem.  Primary 62F15  secondary 62H17  62J10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号