首页 | 本学科首页   官方微博 | 高级检索  
     

基于块状bootstrap技术的Bagging Trees集成算法研究
引用本文:陈凯,马景义. 基于块状bootstrap技术的Bagging Trees集成算法研究[J]. 统计教育, 2008, 0(9): 36-40
作者姓名:陈凯  马景义
作者单位:中国人民大学统计学院,中央财经大学统计学院
摘    要:集成算法已经成为机器学习研究的一大热点,已有许多改进的集成算法,但对病态数据的集成研究并不常见。本文通过对一海藻繁殖案例的研究,提出了一种基于块状bootstrap技术的集成算法,并将其与几种常用的集成算法比较研究得出,在对于一些病态数据而言,该算法往往比其它算法具有更小的模型推广误差和更高的预测精度的优点。

关 键 词:集成算法  决策树  自助法

Study on Bagging Trees Integration Algorithm Based on Block Bootstrap Technology
Chen Kai Ma Jingyi. Study on Bagging Trees Integration Algorithm Based on Block Bootstrap Technology[J]. Statistical education, 2008, 0(9): 36-40
Authors:Chen Kai Ma Jingyi
Affiliation:Chen Kai Ma Jingyi
Abstract:At present,integration algorithm is popular in the field of machine learning,and there are many people proposing to improve algorithms on it,but there are few integration algorithms on Ill-conditioned data.This paper introduces a new bagging trees integration algorithm based on block bootstrap technology by a case study of one kind of algae's reproduction.Compared with several popular integration algorithm,it often has smaller generalization error and higher prediction precision when it deals with Ill-conditioned data.
Keywords:Integration Algorithm  Decision Trees  Bootstrap
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号