首页 | 本学科首页   官方微博 | 高级检索  
     


Clustering of Microarray data via Clique Partitioning
Authors:Gary?Kochenberger  author-information"  >  author-information__contact u-icon-before"  >  mailto:Gary.Kochenberger@Cudenver.edu"   title="  Gary.Kochenberger@Cudenver.edu"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Fred?Glover,Bahram?Alidaee,Haibo?Wang
Affiliation:(1) School of Business, University of Colorado at Denver, Denver;(2) Leeds School of Business, University of Colorado at Boulder, Boulder;(3) School of Business, University of Mississippi, Mississippi;(4) School of Business, Texas A&M International University, Texas
Abstract:Microarrays are repositories of gene expression data that hold tremendous potential for new understanding, leading to advances in functional genomics and molecular biology. Cluster analysis (CA) is an early step in the exploration of such data that is useful for purposes of data reduction, exposing hidden patterns, and the generation of hypotheses regarding the relationship between genes and phenotypes. In this paper we present a new model for the clique partitioning problem and illustrate how it can be used to perform cluster analysis in this setting.
Keywords:clustering  clique partitioning  metaheuristics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号