首页 | 本学科首页   官方微博 | 高级检索  
     


A convergent algorithm for a generalized multivariate isotonic regression problem
Authors:Jürgen Hansohm  Xiaomi Hu
Affiliation:(1) Univ. Naples ‘Federico II’ and CPS, Naples, Italy
Abstract:Sasabuchi et al. (Biometrika 70(2):465–472, 1983) introduces a multivariate version of the well-known univariate isotonic regression which plays a key role in the field of statistical inference under order restrictions. His proposed algorithm for computing the multivariate isotonic regression, however, is guaranteed to converge only under special conditions (Sasabuchi et al., J Stat Comput Simul 73(9):619–641, 2003). In this paper, a more general framework for multivariate isotonic regression is given and an algorithm based on Dykstra’s method is used to compute the multivariate isotonic regression. Two numerical examples are given to illustrate the algorithm and to compare the result with the one published by Fernando and Kulatunga (Comput Stat Data Anal 52:702–712, 2007).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号