首页 | 本学科首页   官方微博 | 高级检索  
     


Clustering to reduce regional heterogeneity: A spanish case-study
Authors:Cristina?Rueda?Sabater  author-information"  >  author-information__contact u-icon-before"  >  mailto:crueda@eio.uva.es"   title="  crueda@eio.uva.es"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Pedro?C.?Alvarez Esteban,Agustín?Mayo?Iscar,Ana?López?Díez
Affiliation:(1) Dpto. de Estadística e Investigación Operativa. Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
Abstract:Statistical methods of dimension reduction and classification are used to obtain homogeneous local-area clustering with regard to the most relevant demographic parameters. The dimension reduction is conducted in two stages using Principal Component Analysis and a modified k-mean procedure is proposed to determine the final clusters. This clustering will be useful in future demographic studies at a local level, in particular to obtain forecasts of demographic rates and population projections. The region of Castile and León in Spain is used to illustrate the method. A Poisson model is used to explore the advantages of the new clustering over the more conventional classification based on provinces.
Keywords:regional demography  data analysis  Spain  methodology  factor analysis  cluster analysis  heterogeneity  data processing  regression analysis  population projections
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号