摘 要: | The exact solution for the combined KS and KdV equation is obtained via introducing a simple and effective nonlinear transformations.This method is very concise and primary and can be applied to other unintegrable nonlinear evolution equations.It is common knowledge that the Korteweg de Vries(KdV) equation [1] (1)has been proposed as model equation for the weakly nonlinear long waves which occur in many different physical systems; the Kuramoto-Sivashinsky (KS) equationis one of the simplest nonliaear partial differential equations that exhibit Chaotic behavior frequently encounted in the study of continous media [2-4] . Many interesting mathematical and physical properties of eqs. (1) and (2) have been studied widely. But, in several problems where a lonq wavelength oscilatory instability is found, the noulineai evolution of the perturbations near rriticality is governed by the dispersion modified Kuramoto-Sivashi nsky equation(3)ft is clear that this equation is a combination of the KdV and KS
|