首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Efficient polynomial-time algorithms for the constrained LCS problem with strings exclusion
Authors:Hsing-Yen Ann  Chang-Biau Yang  Chiou-Ting Tseng
Institution:1. National Center for High-Performance Computing, Tainan, Taiwan
2. Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
Abstract:In this paper, we revisit a recent variant of the longest common subsequence (LCS) problem, the string-excluding constrained LCS (STR-EC-LCS) problem, which was first addressed by Chen and Chao (J Comb Optim 21(3):383–392, 2011). Given two sequences \(X\) and \(Y\) of lengths \(m\) and \(n,\) respectively, and a constraint string \(P\) of length \(r,\) we are to find a common subsequence \(Z\) of \(X\) and \(Y\) which excludes \(P\) as a substring and the length of \(Z\) is maximized. In fact, this problem cannot be correctly solved by the previously proposed algorithm. Thus, we give a correct algorithm with \(O(mnr)\) time to solve it. Then, we revisit the STR-EC-LCS problem with multiple constraints \(\{ P_1, P_2, \ldots , P_k \}.\) We propose a polynomial-time algorithm which runs in \(O(mnR)\) time, where \(R = \sum _{i=1}^{k} |P_i|,\) and thus it overthrows the previous claim of NP-hardness.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号