首页 | 本学科首页   官方微博 | 高级检索  
     


A note on the non-negativity of continuous-time ARMA and GARCH processes
Authors:Henghsiu Tsai  Kung-Sik Chan
Affiliation:(1) Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan;(2) Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA 52242, USA
Abstract:A general approach for modeling the volatility process in continuous-time is based on the convolution of a kernel with a non-decreasing Lévy process, which is non-negative if the kernel is non-negative. Within the framework of Continuous-time Auto-Regressive Moving-Average (CARMA) processes, we derive a necessary condition for the kernel to be non-negative, and propose a numerical method for checking the non-negativity of a kernel function. These results can be lifted to solving a similar problem with another approach to modeling volatility via the COntinuous-time Generalized Auto-Regressive Conditional Heteroscedastic (COGARCH) processes.
Keywords:DIRECT  Global optimization  Kernel  Lévy process  Volatility
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号