首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Decomposition algorithms for the integrated process planning and scheduling problem
Institution:1. Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran;2. Department of Mechanical, Automotive, and Materials Engineering, Faculty of Engineering, University of Windsor, Windsor, Canada;3. Ivey Business School, Western University, London, Ontario, Canada
Abstract:There are several algorithms to solve the integrated process planning and scheduling (IPPS) problem (i.e., flexible job shop scheduling with process plan flexibility) in the literature. All the existing algorithms for IPPS are heuristic-based search methods and no research has investigated the use of exact solution methods for this problem. We develop several decomposition approaches based on the logic-based Benders decomposition (LBBD) algorithm. Our LBBD algorithm allows us to partition the decision variables in the IPPS problem into two models, master-problem and sub-problem. The master-problem determines process plan and operation-machine assignment, while the sub-problem optimizes sequencing and scheduling decisions. To achieve faster convergence, we develop two relaxations for the optimal makespan objective function and incorporate them into the master-problem. We analyze the performance and further enhance the algorithm with two ideas, a Benders optimality cut based on the critical path and a faster heuristic way to solve the sub-problem. 16 standard benchmark instances available in the literature are solved to evaluate and compare the performances of our algorithms with those of the state-of-the-art methods in the literature. The proposed algorithm either results in the optimal solution or improves the best-known solutions in all the existing instances, demonstrating its superiority to the existing state-of-the-art methods in literature.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号