首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian Variable Selection in Markov Mixture Models
Authors:Roberta Paroli  Luigi Spezia
Affiliation:1. Dipartimento di Scienze Statistiche , Università Cattolica S.C. , Milano, Italy roberta.paroli@unicatt.it;3. Dipartimento di Statistica , Università Ca' Foscari , Venezia, Italy
Abstract:Monte Carlo simulation is used to evaluate the actual confidence levels of five different approximations for confidence intervals for the probability of success in Markov dependent trials. The approximations involve the conditional probability of success as a nuisance parameter, and the effects of substituting Klotz's (1973), Price's (1976), and a new estimator are also evaluated. The new estimator is less biased and tends to increase the confidence level. A program for calculating the estimator and the confidence interval approximations is available.
Keywords:Gibbs variable selection  Kuo–Mallick method  Metropolized–Kuo–Mallick method  Stochastic search variable selection
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号