A Novel Method to Calculate Mean Survival Time for Time-to-Event Data |
| |
Authors: | Zheng Su |
| |
Affiliation: | Genentech Inc. , San Francisco , California , USA |
| |
Abstract: | In the analysis of time-to-event data, restricted mean survival time has been well investigated in the literature and provided by many commercial software packages, while calculating mean survival time remains as a challenge due to censoring or insufficient follow-up time. Several researchers have proposed a hybrid estimator of mean survival based on the Kaplan–Meier curve with an extrapolated tail. However, this approach often leads to biased estimate due to poor estimate of the parameters in the extrapolated “tail” and the large variability associated with the tail of the Kaplan–Meier curve due to small set of patients at risk. Two key challenges in this approach are (1) where the extrapolation should start and (2) how to estimate the parameters for the extrapolated tail. The authors propose a novel approach to calculate mean survival time to address these two challenges. In the proposed approach, an algorithm is used to search if there are any time points where the hazard rates change significantly. The survival function is estimated by the Kaplan–Meier method prior to the last change point and approximated by an exponential function beyond the last change point. The parameter in the exponential function is estimated locally. Mean survival time is derived based on this survival function. The simulation and case studies demonstrated the superiority of the proposed approach. |
| |
Keywords: | Change point Extrapolation Restricted mean survival Semiparametric |
|
|