首页 | 本学科首页   官方微博 | 高级检索  
     


An EM and a Stochastic Version of the EM Algorithm for Nonparametric Hidden Semi-Markov Models
Authors:Sonia Malefaki  Nikolaos Limnios
Affiliation:Laboratoire de Mathématiques Appliquées de Compiègne, UTC , Compiègne, France
Abstract:
The Hidden semi-Markov models (HSMMs) were introduced to overcome the constraint of a geometric sojourn time distribution for the different hidden states in the classical hidden Markov models. Several variations of HSMMs were proposed that model the sojourn times by a parametric or a nonparametric family of distributions. In this article, we concentrate our interest on the nonparametric case where the duration distributions are attached to transitions and not to states as in most of the published papers in HSMMs. Therefore, it is worth noticing that here we treat the underlying hidden semi-Markov chain in its general probabilistic structure. In that case, Barbu and Limnios (2008 Barbu , V. , Limnios , N. ( 2008 ). Semi-Markov Chains and Hidden Semi-Markov Models Toward Applications: Their Use in Reliability and DNA Analysis . New York : Springer . [Google Scholar]) proposed an Expectation–Maximization (EM) algorithm in order to estimate the semi-Markov kernel and the emission probabilities that characterize the dynamics of the model. In this article, we consider an improved version of Barbu and Limnios' EM algorithm which is faster than the original one. Moreover, we propose a stochastic version of the EM algorithm that achieves comparable estimates with the EM algorithm in less execution time. Some numerical examples are provided which illustrate the efficient performance of the proposed algorithms.
Keywords:EM algorithm  Hidden semi-Markov models  Maximum likelihood estimation  Stochastic EM algorithm
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号