首页 | 本学科首页   官方微博 | 高级检索  
     


Robust estimation methods for exponential data: a monte-carlo comparison
Authors:Thomas R. Willemain  Ali Allahverdi  Philip Desautels  Janine ldredge  Ozden Gur  Gregory Panos
Affiliation:Department of Decision Sciences and Engineering Systems , Rensselaer Polytechnic Institute , Troy, NY, 12180-3590, USA
Abstract:We compare the performance of seven robust estimators for the parameter of an exponential distribution. These include the debiased median and two optimally-weighted one-sided trimmed means. We also introduce four new estimators: the Transform, Bayes, Scaled and Bicube estimators. We make the Monte Carlo comparisons for three sample sizes and six situations. We evaluate the comparisons in terms of a new performance measure, Mean Absolute Differential Error (MADE), and a premium/protection interpretation of MADE. We organize the comparisons to enhance statistical power by making maximal use of common random deviates. The Transform estimator provides the best performance as judged by MADE. The singly-trimmed mean and Transform method define the efficient frontier of premium/protection.
Keywords:robust estimation  exponential distribution  outliers  Monte Carlo methods
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号