首页 | 本学科首页   官方微博 | 高级检索  
     


Step-Down diagnostic analysis for monitoring the covariance matrix of bivariate normal processes
Authors:Sueli A. Mingoti  Letícia P. Pinto
Affiliation:1. Department of Statistics, Universidade Federal de Minas Gerais – UFMG – Statistics A. Antonio Carlos, 6627 Campus Pampulha Bairro S?o Luiz, Belo Horizonte, Minas Gerais, Brazilsuelimngt@gmail.com sueliam@est.ufmg.br;3. Department of Computer Science, Universidade Federal de Minas Gerais – UFMG – Computer Science A. Antonio Carlos, 6627 Campus Pampulha Bairro S?o Luiz, Belo Horizonte, Minas Gerais, Brazil;4. Department of Statistics, Universidade Federal de Minas Gerais – UFMG – Statistics A. Antonio Carlos, 6627 Campus Pampulha Bairro S?o Luiz, Belo Horizonte, Minas Gerais, Brazil
Abstract:ABSTRACT

A comparison among VMIX, VMAX and the adapted step-down Sullivan et al. (SE) tests for covariance matrix under bivariate normal assumption is presented. The type I error and power estimates were obtained by using Monte Carlo simulation under different scenarios with respect to covariance and correlation structures. In general, VMIX was more powerful than VMAX being SE more powerful than both, with few exceptions. SE test is more general since it can be used for normal and non-normal data, with no restriction with respect to the pattern of the covariance matrix shifts, and for larger dimension than the bivariate case.
Keywords:Bivarite normal distribution  Covariance matrix  Monte Carlo simulation  Step-down test  Vmix  Vmax
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号