Maximum likelihood estimation for mixtures of two gompertz distributions when censoring occurs |
| |
Authors: | N. H. Gordon |
| |
Affiliation: | Department of Epidemiology and Biostatistics , Ireland Cancer Center , Case Western Reserve University, Cleveland, Ohio, 44106 |
| |
Abstract: | In estimating the proportion ‘cured’ after adjuvant treatment, a population of cancer patients can be assumed to be a mixture of two Gompertz subpopulations, those who will die of other causes with no evidence of disease relapse and those who will die of their primary cancer. Estimates of the parameters of the component dying of other causes can be obtained from census data, whereas maximum likelihood estimates for the proportion cured and for the parameters of the component of patients dying of cancer can be obtained from follow-up data. This paper examines, through simulation of follow-up data, the feasibility of maximum likelihood estimation of a mixture of two Gompertz distributions when censoring occurs. Means, variances and mean square error of the maximum likelihood estimates and the estimated asymptotic variance-covariance matrix is obtained from the simulated samples. The relationship of these variances with sample size, proportion censored, mixing proportion and population parameters are considered. Moderate sample size typical of cooperative trials yield clinically acceptable estimates. Both increasing sample size and decreasing proportion of censored data decreases variance and covariance of the unknown parameters. Useful results can be obtained with data which are as much as 50% censored. Moreover, if the sample size is sufficiently large, survival data which are as much as 70% censored can yield satisfactory results. |
| |
Keywords: | Gompertz distribution finite mixtures maximum likelihood estimation sample size degree of censorship cure cancer |
|
|