首页 | 本学科首页   官方微博 | 高级检索  
     


Fractional Regression Hot Deck Imputation Weight Adjustment
Authors:Minhui Paik  Michael D. Larsen
Affiliation:1. Department of Mathematics , The University of Toledo , Toledo , Ohio , USA;2. Department of Statistics , The George Washington University , Rockville , Maryland , USA
Abstract:Fractional regression hot deck imputation (FRHDI) imputes multiple values for each instance of a missing dependent variable. The imputed values are equal to the predicted value plus multiple random residuals. Fractional weights enable variance estimation and preserve correlations. In some circumstances with some starting weight values, existing procedures for computing FRHDI weights can produce negative values. We discuss procedures for constructing non-negative adjusted fractional weights for FRHDI and study performance of the algorithm using simulation. The algorithm can be used effectively with FRDHI procedures for handling missing data in the context of a complex sample survey.
Keywords:Calibration  Missing at Random  Missing data  Multiple imputation  Quadratic programming  Regression weighting
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号