首页 | 本学科首页   官方微博 | 高级检索  
     


Predictive Influence of Unavailable Values of Future Explanatory Variables in a Linear Model
Authors:S. K. Bhattacharjee  Ahmed Shamiri  Md. Sabiruzzaman  S. Rao Jammalamadaka
Affiliation:1. Institute of Mathematical Sciences , University of Malaya , Kuala Lumpur , Malaysia skbhattacharjee01@yahoo.com;3. Institute of Mathematical Sciences , University of Malaya , Kuala Lumpur , Malaysia;4. Department of Statistics and Applied Probability , University of California , Santa Barbara , California , USA
Abstract:We consider an approach to prediction in linear model when values of the future explanatory variables are unavailable, we predict a future response y f at a future sample point x f when some components of x f are unavailable. We consider both the cases where x f are dependent and independent but normally distributed. A Taylor expansion is used to derive an approximation to the predictive density, and the influence of missing future explanatory variables (the loss or discrepancy) is assessed using the Kullback–Leibler measure of divergence. This discrepancy is compared in different scenarios including the situation where the missing variables are dropped entirely.
Keywords:Discrepancy  Influence of variables  Kullback–Leibler divergence  Missing variable  Predictive density  Prior density  Taylor expansion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号