首页 | 本学科首页   官方微博 | 高级检索  
     


A Necessary Power Divergence Type Family Tests of Multivariate Normality
Authors:Apostolos Batsidis  Nirian Martin  Leandro Pardo  Konstantinos Zografos
Affiliation:1. Department of Mathematics , University of Ioannina , Ioannina , GREECE;2. Department of Statistics , Universidad Carlos III de Madrid , Spain;3. Department of Statistics and Operations Research , Universidad Complutense de Madrid , Spain
Abstract:In a recent article, Cardoso de Oliveira and Ferreira have proposed a multivariate extension of the univariate chi-squared normality test, using a known result for the distribution of quadratic forms in normal variables. In this article, we propose a family of power divergence type test statistics for testing the hypothesis of multinormality. The proposed family of test statistics includes as a particular case the test proposed by Cardoso de Oliveira and Ferreira. We assess the performance of the new family of test statistics by using Monte Carlo simulation. In this context, the type I error rates and the power of the tests are studied, for important family members. Moreover, the performance of significant members of the proposed test statistics are compared with the respective performance of a multivariate normality test, proposed recently by Batsidis and Zografos. Finally, two well-known data sets are used to illustrate the method developed in this article as well as the specialized test of multivariate normality proposed by Batsidis and Zografos.
Keywords:Goodness of fit  Monte Carlo study  Multivariate normality test  Power divergence  Song's measure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号