首页 | 本学科首页   官方微博 | 高级检索  
     


On Mixture Periodic Vector Autoregressive Models
Authors:M. Bentarzi  L. Djeddou
Affiliation:1. Université des Sciences et de la Technologie, U. S. T. H. B. Algiers, Algeriamohamedbentarzi@yahoo.fr;3. Faculté des Sciences Economiques et Sciences de Gestion, Université d’Alger, Algeria
Abstract:This article deals with the study of some properties of a mixture periodically correlated n-variate vector autoregressive (MPVAR) time series model, which extends the mixture time invariant parameter n-vector autoregressive (MVAR) model that has been recently studied by Fong et al. (2007 Fong, P.W., Li, W.K., Yau, C.W., Wong, C.S. (2007). On a mixture vector autoregressive model. The Canadian Journal of Statistics 35:135150.[Crossref], [Web of Science ®] [Google Scholar]). Our main contributions here are, on the one side, the obtaining of the second moment periodically stationary condition for a n-variate MPVARS(n; K; 2, …, 2) model; furthermore, the closed-form of the second moment is obtained and, on the other side, the estimation, via the Expectation-Maximization (EM) algorithm, of the coefficient matrices and the error variance matrix.
Keywords:EM algorithm  Mixture periodic vector AR models  Multivariate Periodically correlated process  Periodic vector autoregressive models
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号