首页 | 本学科首页   官方微博 | 高级检索  
     


An efficient algorithm for Harrison-Stevens forecasting using the multi-process multivariate dynamic linear model
Authors:William M. Bolstad
Affiliation:Department of Mathematics , University of Waikato , Hamilton, New Zealand
Abstract:This paper develops a computationally efficient algorithm for Harrison-Stevens forecasting in a multivariate time series which has correlated errors. The algorithm uses the observation vector one component at a time on the multiprocess multivariate dynamic linear model. This gives a computationally efficient, robust, quick adapting forecasting method for non stationary multivariate time series.
Keywords:Bayesian forecasting  dynamic linear model  Kalman filter  mixture of distributions  multi-process Kalman filter  state vector  state vector estimator
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号