首页 | 本学科首页   官方微博 | 高级检索  
     


Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration
Authors:Morten   rregaard Nielsen   Per Houmann Frederiksen
Affiliation: a Cornell University, Ithaca, New York, USAb Aarhus School of Business, Aarhus, Denmark
Abstract:
In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches, and we consider both parametric and semiparametric estimation methods. The estimators are briefly introduced and compared, and the criteria adopted for measuring finite sample performance are bias and root mean squared error. Most importantly, the simulations reveal that (1) the frequency domain maximum likelihood procedure is superior to the time domain parametric methods, (2) all the estimators are fairly robust to conditionally heteroscedastic errors, (3) the local polynomial Whittle and bias-reduced log-periodogram regression estimators are shown to be more robust to short-run dynamics than other semiparametric (frequency domain and wavelet) estimators and in some cases even outperform the time domain parametric methods, and (4) without sufficient trimming of scales the wavelet-based estimators are heavily biased.
Keywords:Bias  Finite sample distribution  Fractional integration  Maximum likelihood  Monte Carlo simulation  Parametric estimation  Semiparametric estimation  Wavelet
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号