首页 | 本学科首页   官方微博 | 高级检索  
     


On Shortest k-Edge-Connected Steiner Networks in Metric Spaces
Authors:Xiufeng Du  Xiaodong Hu  Xiaohua Jia
Abstract:Given a set of points P in a metric space, let l(P) denote the ratio of lengths between the shortest k-edge-connected Steiner network and the shortest k-edge-connected spanning network on P, and let r = inf l(P) mid P for k ge 1. In this paper, we show that in any metric space, r ge 3/4 for k ge 2, and there exists a polynomial-time agr-approximation for the shortest k-edge-connected Steiner network, where agr = 2 for even k and agr = 2 + 4/(3k) for odd k. In the Euclidean plane, 
$$r_k geqslant sqrt 3 /2,;;r_3 leqslant (sqrt 3 + 2)/4$$
and 
$$r_4 leqslant (7 + 3sqrt 3 )/(9 + 2sqrt 3 )$$
.
Keywords:k-edge-connectivity  spanning networks  Steiner networks  Steiner ratio
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号