首页 | 本学科首页   官方微博 | 高级检索  
     


An objective Bayesian estimation in a two-period crossover design
Authors:Dandan Li  Siva Sivaganesan
Affiliation:Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, USA
Abstract:Two-period crossover design is one of the commonly used designs in clinical trials. But, the estimation of treatment effect is complicated by the possible presence of carryover effect. It is known that ignoring the carryover effect when it exists can lead to poor estimates of the treatment effect. The classical approach by Grizzle (1965 Grizzle, J.E. (1965). The two-period change-over design and its use in clinical trials. Biometrics 21:467480. See Grizzle (1974) for corrections.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]) consists of two stages. First, a preliminary test is conducted on carryover effect. If the carryover effect is significant, analysis is based only on data from period one; otherwise, analysis is based on data from both periods. A Bayesian approach with improper priors was proposed by Grieve (1985 Grieve, A.P. (1985). A Bayesian analysis of the two-period crossover design for clinical trials. Biometrics 41:979990.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]) which uses a mixture of two models: a model with carryover effect and another without. The indeterminacy of the Bayes factor due to the arbitrary constant in the improper prior was addressed by assigning a minimally discriminatory value to the constant. In this article, we present an objective Bayesian estimation approach to the two-period crossover design which is also based on a mixture model, but using the commonly recommended Zellner–Siow g-prior. We provide simulation studies and a real data example and compare the numerical results with Grizzle (1965 Grizzle, J.E. (1965). The two-period change-over design and its use in clinical trials. Biometrics 21:467480. See Grizzle (1974) for corrections.[Crossref], [PubMed], [Web of Science ®] [Google Scholar])’s and Grieve (1985 Grieve, A.P. (1985). A Bayesian analysis of the two-period crossover design for clinical trials. Biometrics 41:979990.[Crossref], [PubMed], [Web of Science ®] [Google Scholar])’s approaches.
Keywords:Estimation  Objective Bayesian  Two-period crossover design.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号