首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian analysis of multivariate threshold autoregressive models with missing data
Authors:Sergio A. Calderón V.  Fabio H. Nieto
Affiliation:Departamento de Estadística, Universidad Nacional de Colombia, Bogotá D.C., Colombia
Abstract:In some fields, we are forced to work with missing data in multivariate time series. Unfortunately, the data analysis in this context cannot be carried out in the same way as in the case of complete data. To deal with this problem, a Bayesian analysis of multivariate threshold autoregressive models with exogenous inputs and missing data is carried out. In this paper, Markov chain Monte Carlo methods are used to obtain samples from the involved posterior distributions, including threshold values and missing data. In order to identify autoregressive orders, we adapt the Bayesian variable selection method in this class of multivariate process. The number of regimes is estimated using marginal likelihood or product parameter-space strategies.
Keywords:Bayesian analysis  marginal likelihood  metropolized Carlin-Chib  missing data  Monte Carlo Markov chain  multivariate threshold autoregressive models.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号