首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation and variable selection in single-index composite quantile regression
Authors:Huilan Liu  Hu Yang
Affiliation:1. College of Mathematics and Statistics, Guizhou University, Guiyang, Guizhou Province, P. R. China;2. College of Mathematics and Statistics, Chongqing University, Chongqing, P. R. China
Abstract:In this article, a new composite quantile regression estimation approach is proposed for estimating the parametric part of single-index model. We use local linear composite quantile regression (CQR) for estimating the nonparametric part of single-index model (SIM) when the error distribution is symmetrical. The weighted local linear CQR is proposed for estimating the nonparametric part of SIM when the error distribution is asymmetrical. Moreover, a new variable selection procedure is proposed for SIM. Under some regularity conditions, we establish the large sample properties of the proposed estimators. Simulation studies and a real data analysis are presented to illustrate the behavior of the proposed estimators.
Keywords:Adaptive lasso  Composite quantile regression  Optimal weights  Single-index model  Variable selection
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号