首页 | 本学科首页   官方微博 | 高级检索  
     


A comparison of Japanese failure models: Hybrid neural networks,logit models,and discriminant analysis
Authors:Juliana?Yim  author-information"  >  author-information__contact u-icon-before"  >  mailto:juliana.yim@ems.rmit.edu.au"   title="  juliana.yim@ems.rmit.edu.au"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Heather?Mitchell
Affiliation:(1) School of Economics and Finance, RMIT University, Victoria, Australia
Abstract:This article looks at the ability of a relatively new technique, hybrid artificial neural networks (ANNs), to predict Japanese banking and firm failures. These models are compared with traditional statistical techniques and conventional ANN models. The results suggest that hybrid neural networks outperform all other models in predicting failure for one year prior to the event. This suggests that for researchers, policymakers, and others interested in early warning systems, the hybrid network may be a useful tool for predicting banking and firm failures.
Keywords:Hybrid neural networks  Statistical models  Firm failures  Bank failures  Early warning systems
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号