首页 | 本学科首页   官方微博 | 高级检索  
     


The Posterior Distribution of the Parameters of Component Lifetimes Based on Autopsy Data in a Shock Model
Authors:  rund Gå  semyr,&   Bent Natvig
Affiliation:University of Oslo
Abstract:
In this paper we consider a binary, monotone system whose component states are dependent through the possible occurrence of independent common shocks, i.e. shocks that destroy several components at once. The individual failure of a component is also thought of as a shock. Such systems can be used to model common cause failures in reliability analysis. The system may be a technological one, or a human being. It is observed until it fails or dies. At this instant, the set of failed components and the failure time of the system are noted. The failure times of the components are not known. These are the so-called autopsy data of the system. For the case of independent components, i.e. no common shocks, Meilijson (1981), Nowik (1990), Antoine et al . (1993) and GTsemyr (1998) discuss the corresponding identifiability problem, i.e. whether the component life distributions can be determined from the distribution of the observed data. Assuming a model where autopsy data is known to be enough for identifia bility, Meilijson (1994) goes beyond the identifiability question and into maximum likelihood estimation of the parameters of the component lifetime distributions based on empirical autopsy data from a sample of several systems. He also considers life-monitoring of some components and conditional life-monitoring of some other. Here a corresponding Bayesian approach is presented for the shock model. Due to prior information one advantage of this approach is that the identifiability problem represents no obstacle. The motivation for introducing the shock model is that the autopsy model is of special importance when components can not be tested separately because it is difficult to reproduce the conditions prevailing in the functioning system. In Gåsemyr & Natvig (1997) we treat the Bayesian approach to life-monitoring and conditional life- monitoring of components
Keywords:critical set    critical shock    fatal set    natural conjugate prior    weighted sum of products of generalized gamma distributions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号