首页 | 本学科首页   官方微博 | 高级检索  
     

缺失偏态数据下线性回归模型的统计推断
引用本文:吴刘仓,张家茂,邱贻涛. 缺失偏态数据下线性回归模型的统计推断[J]. 统计与信息论坛, 2013, 28(9): 22-26
作者姓名:吴刘仓  张家茂  邱贻涛
作者单位:昆明理工大学理学院,云南昆明,650093
基金项目:国家自然科学基金项目《复杂数据下联合均值与方差模型的统计推断》(11261025);国家自然科学基金项目《复杂空间点过程数据的统计推断》(11126309);云南省自然科学基金项目《云南省地区经济增长差异与效率研究》(2011FZ044)
摘    要:研究缺失偏态数据下线性回归模型的参数估计问题,针对缺失偏态数据,为克服样本分布扭曲缺点和提高模型的回归系数、尺度参数和偏度参数的估计效果,提出了一种适合偏态数据下线性回归模型中缺失数据的修正回归插补方法.通过随机模拟和实例研究,并与均值插补、回归插补、随机回归插补方法比较,结果表明所提出的修正回归插补方法是有效可行的.

关 键 词:缺失偏态数据  线性回归模型  修正回归插补  极大似然估计

Statistical Inference for Linear Regression Model with Missing Skew-normal Data
WU Liu-cang , ZHANG Jia-mao , QIU Yi-tao. Statistical Inference for Linear Regression Model with Missing Skew-normal Data[J]. Statistics & Information Tribune, 2013, 28(9): 22-26
Authors:WU Liu-cang    ZHANG Jia-mao    QIU Yi-tao
Affiliation:(Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China)
Abstract:We investigate the estimation of regression coefficient, scale parameter and skewness parameter for liner regression model with missing skew-normal data. In order to overcome the disadvantages of sample distribution distorted, improve the effect of estimation of regression coefficient, the scale parameter and the skewness parameter, we propose a corrected regression imputation method for linear regression model with missing skew-normal data. Compared with mean imputation, regression imputation, random regression imputation methods, simulation studies and a real example show the corrected regression imputation method is useful and effective.
Keywords:missing skew-normal data  linear regression model  corrected regression imputation  maximum likelihood estimation
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号