Abstract: | The influence of observations on the parameter estimates for the simple structural errors-in-variables model with no equation error, under the Student-t distribution, is investigated using the local influence approach. The main conclusion is that the Student-t model with small degrees of freedom is able to incorporate possible outliers and influential observations in the data. The likelihood displacement approach is useful for outlier detection, especially when a masking phenomenon is present and the degrees of freedom parameter is large. The diagnostics are illustrated with two examples. |