首页 | 本学科首页   官方微博 | 高级检索  
     

基于多源异构数据的玉米期货价格可解释性预测
作者姓名:曾宇容  吴彬溶  王林  张金隆
作者单位:1. 湖北经济学院信息工程学院;2. 湖北省互联网金融信息工程技术研究中心;3. 华中科技大学管理学院
基金项目:国家社会科学基金重大项目(20&ZD126);
摘    要:玉米期货价格预测和预警工作有助于指导农业经济高质量发展,而自2020年6月以来我国玉米期货价格波动剧烈,亟需准确高效的玉米期货价格预测方法。针对现有研究未充分考虑疫情、政策调控及新闻文本中潜在的预测信息等不足,本文综合考虑了玉米市场的供求关系、政策调整、国际市场冲击、疫情冲击、突发事件的影响等导致玉米价格波动的多重因素,设计了有效的玉米期货价格可解释性预测框架。同时,针对现有玉米期货价格预测可解释性不足的问题,提出了一种新颖的DE-TFT可解释性玉米期货价格预测模型,该模型采用差分进化算法对时域融合变换器(temporal fusion transformers, TFT)的参数进行智能高效的优化。TFT是一种新颖的基于注意力的深度学习模型,将高性能预测与时间动态可解释分析相结合,表现出优异的预测性能。TFT模型可以产生可解释的玉米期货价格预测结果,包括时间步长的注意力分析和输入变量的重要性排序。在实证研究中,潜在狄利克雷分配模型用来分析“中华粮网”收集的玉米新闻资讯和政策调整的内容及主题,卷积神经网络用来提取新闻资讯的潜在预测信息,可解释的实验结果表明,反映国内疫情状况的百度指数“疫...

关 键 词:玉米期货价格  时间序列预测  可解释性神经网络  文本挖掘  深度学习
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号