首页 | 本学科首页   官方微博 | 高级检索  
     


Single-parameter inference based on partial prior information
Authors:Diane Lambert  George T. Duncan
Abstract:Partial specification of a prior distribution can be appealing to an analyst, but there is no conventional way to update a partial prior. In this paper, we show how a framework for Bayesian updating with data can be based on the Dirichlet(a) process. Within this framework, partial information predictors generalize standard minimax predictors and have interesting multiple-point shrinkage properties. Approximations to partial-information estimators for squared error loss are defined straightforwardly, and an estimate of the mean shrinks the sample mean. The proposed updating of the partial prior is a consequence of four natural requirements when the Dirichlet parameter a is continuous. Namely, the updated partial posterior should be calculable from knowledge of only the data and partial prior, it should be faithful to the full posterior distribution, it should assign positive probability to every observed event {X,}, and it should not assign probability to unobserved events not included in the partial prior specification.
Keywords:Subjective probability elicitation  Dirichlet process  prediction  Bayes estimates  minimax  data-dependent probability domains
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号