首页 | 本学科首页   官方微博 | 高级检索  
     

基于季节调整和Holt-Winters的月度负荷预测方法
引用本文:苏振宇,龙勇,汪於. 基于季节调整和Holt-Winters的月度负荷预测方法[J]. 中国管理科学, 2019, 27(3): 30-40. DOI: 10.16381/j.cnki.issn1003-207x.2019.03.004
作者姓名:苏振宇  龙勇  汪於
作者单位:1. 重庆大学经济与工商管理学院, 重庆 400030;2. 国网甘肃省电力公司培训中心, 甘肃 兰州 730070
基金项目:国家社会科学基金重点资助项目(14AZD130)
摘    要:针对负荷序列中异常数据会导致模型误设或参数估计发生偏差的问题,提出利用季节调整方法,先对原始负荷序列进行季节调整,获得消除离群值、节假日影响的季节调整后序列和季节成分序列;然后用改进的Holt-Winters方法对季节调整后成分进行预测,用虚拟回归方法预测季节成分序列;最后对各成分预测结果重构得到最终预测结果的月度负荷预测方法。通过实例检验,提出的方法能明显提高预测精度,预测效果要优于季节性Holt-Winters、SARIMA、神经网络、支持向量机等模型。

关 键 词:月度负荷  Holt-Winters方法  季节调整  负荷预测  
收稿时间:2017-04-26
修稿时间:2017-09-25

A Hybrid Monthly Load Forecasting Method Based on Seasonal Adjustment and Holt-Winters
SU Zhen-yu,LONG Yong,WANG Yu. A Hybrid Monthly Load Forecasting Method Based on Seasonal Adjustment and Holt-Winters[J]. Chinese Journal of Management Science, 2019, 27(3): 30-40. DOI: 10.16381/j.cnki.issn1003-207x.2019.03.004
Authors:SU Zhen-yu  LONG Yong  WANG Yu
Affiliation:1. School of Economics and Business Administration, Chongqing University, Chongqing 400030, China;2. Gansu Electric Power Training Center, Lanzhou 730070, China
Abstract:Load forecasting plays an important role in the planning and economic and secure operation of power systems. However, the abnormal data in load series will result in forecasting model misspecification or incorrect model parameters estimation. So a hybrid monthly load forecasting model based on seasonal adjustment and improved holt-winters is built to solve such problems. Firstly, after seasonal adjustment, the final seasonally adjusted series where outliers or holidays effects have been removed and seasonal component series can be obtained simultaneously; secondly, the improved Holt-Winters method is used to forecast final seasonally adjusted component, and virtual regression equation is used to forecast seasonal component. Finally, the final forecasting result can be obtained by using forecasting result of seasonal component and seasonal adjusted component jointly. The case calculation results show that the proposed method can significantly improve the prediction accuracy and the forecasting performance is better than seasonal Holt-Winters, SARIMA, neural network, and support vector machine. In summary, the proposed model can be practically applied as a monthly load forecasting tool.
Keywords:monthly load  Holt-Winters  seasonal adjustment  load forecasting  
点击此处可从《中国管理科学》浏览原始摘要信息
点击此处可从《中国管理科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号