首页 | 本学科首页   官方微博 | 高级检索  
     

电子商务客户网络购物行为挖掘
引用本文:吕晓玲,吴喜之. 电子商务客户网络购物行为挖掘[J]. 统计与信息论坛, 2007, 22(3): 29-32
作者姓名:吕晓玲  吴喜之
作者单位:1. 香港城市大学,管理科学系,香港
2. 中国人民大学,统计学院,北京,100872
摘    要:电子商务已经成为越来越多的消费者购物的一个重要途径,分析网络购物客户的个人特征及其购物行为,对商业的成功有着至关重要的作用。然而电子商务还是一个崭新的商业领域,很多的业界人士仍忙于技术方面的考虑,却很少分析客户的网络购买行为。而使用真实网络购物KDD Cup 2000数据,分析Gazelle.com公司客户的个人特征和网络购物行为,并应用数据挖掘的购物篮模型对各商品之间的关联性进行分析,才能更确切地预测模型预测客户的忠诚度。

关 键 词:电子商务  网络购物  KDD  Cup  2000数据  数据挖掘  购物篮模型  预测模型
文章编号:1007-3116(2007)03-0029-04
修稿时间:2006-11-16

Data Mining on the Purchase Behaviors of the Electronic Commerce Customers
LV Xiao-ling,WU Xi-zhi. Data Mining on the Purchase Behaviors of the Electronic Commerce Customers[J]. Statistics & Information Tribune, 2007, 22(3): 29-32
Authors:LV Xiao-ling  WU Xi-zhi
Affiliation:LV Xiao-ling, WU Xi-zhi (1. Dept. Management Sciences, City University of Hong Kong, Hong Kong, China; 2. School of Statistics, Renmin University of China, Beijing 100872, China)
Abstract:With the rapid development of information technology, e - commerce grows every fast. Nowadays more and more customers choose e- commerce as one of the channels when they purchase products. However e - commerce is still a very new business field. Many business men put their efforts on the technological consideration, but not the online purchasing behavior of their customers. It is no doubt that customers are the most important part of a company. Who on earth are the online customers? What are their web surfing and online purchasing behavior? What is the difference between them and the traditional customers? The answers to these questions are quite important for the success of e - commerce.
Keywords:e-commerce  online purchasing  KDD Gup 2000 dataset  data mining  basket analysis  predictive modesle
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号