首页 | 本学科首页   官方微博 | 高级检索  
     


The uniform convergence of the nadaraya-watson regression function estimate
Authors:Luc P. Devroye
Abstract:If (X1,Y1), …, (Xn,Yn) is a sequence of independent identically distributed Rd × R-valued random vectors then Nadaraya (1964) and Watson (1964) proposed to estimate the regression function m(x) = ? {Y1|X1 = x{ by equation image where K is a known density and {hn} is a sequence of positive numbers satisfying certain properties. In this paper a variety of conditions are given for the strong convergence to 0 of essXsup|mn (X)-m(X)| (here X is independent of the data and distributed as X1). The theorems are valid for all distributions of X1 and for all sequences {hn} satisfying hn → 0 and nhurn:x-wiley:03195724:media:CJS179:tex2gif-stack-1/log n→0.
Keywords:Uniform consistency  regression function estimators  kernel estimates  strong uniform convergence  AMS 1970 subject classifications: Primary 62G05   secondary 60F15
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号