Abstract: | If (X1,Y1), …, (Xn,Yn) is a sequence of independent identically distributed Rd × R-valued random vectors then Nadaraya (1964) and Watson (1964) proposed to estimate the regression function m(x) = ? {Y1|X1 = x{ by where K is a known density and {hn} is a sequence of positive numbers satisfying certain properties. In this paper a variety of conditions are given for the strong convergence to 0 of essXsup|mn (X)-m(X)| (here X is independent of the data and distributed as X1). The theorems are valid for all distributions of X1 and for all sequences {hn} satisfying hn → 0 and nh/log n→0. |