Abstract: | Let X1, X2, …, Xn be identically, independently distributed N(i,1) random variables, where i = 0, ±1, ±2, … Hammersley (1950) showed that d = [X?n], the nearest integer to the sample mean, is the maximum likelihood estimator of i. Khan (1973) showed that d is minimax and admissible with respect to zero-one loss. This note now proves a conjecture of Stein to the effect that in the class of integer-valued estimators d is minimax and admissible under squared-error loss. |