首页 | 本学科首页   官方微博 | 高级检索  
     


Second-order refined peaks-over-threshold modelling for heavy-tailed distributions
Authors:Jan Beirlant  Elisabeth Joossens  Johan Segers
Affiliation:1. Department of Mathematics and Leuven Statistics Research Centre, Katholieke Universiteit Leuven, Celestijnenlaan 200b, B-3001 Heverlee, Belgium;2. Joint Research Centre, European Commission, Via Fermi 2749, 21027 Ispra (VA), Italy;3. Institut de statistique, Université catholique de Louvain, Voie du Roman Pays 20, B-1348 Louvain-la-Neuve, Belgium
Abstract:Modelling excesses over a high threshold using the Pareto or generalized Pareto distribution (PD/GPD) is the most popular approach in extreme value statistics. This method typically requires high thresholds in order for the (G)PD to fit well and in such a case applies only to a small upper fraction of the data. The extension of the (G)PD proposed in this paper is able to describe the excess distribution for lower thresholds in case of heavy-tailed distributions. This yields a statistical model that can be fitted to a larger portion of the data. Moreover, estimates of tail parameters display stability for a larger range of thresholds. Our findings are supported by asymptotic results, simulations and a case study.
Keywords:Bias reduction   Hill estimator   Extended Pareto distribution   Extreme value index   Heavy tails   Regular variation   Tail empirical process   Tail probability   Weissman probability estimator
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号