首页 | 本学科首页   官方微博 | 高级检索  
     


Robust nonparametric estimation with missing data
Authors:Graciela Boente,Wenceslao Gonzá  lez&ndash  Manteiga,Ana Pé  rez&ndash  Gonzá  lez
Affiliation:1. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina;2. Universidad de Santiago de Compostela, Spain;3. Universidad de Vigo, Spain
Abstract:In this paper, under a nonparametric regression model, we introduce two families of robust procedures to estimate the regression function when missing data occur in the response. The first proposal is based on a local MM-functional applied to the conditional distribution function estimate adapted to the presence of missing data. The second proposal imputes the missing responses using the local MM-smoother based on the observed sample and then estimates the regression function with the completed sample. We show that the robust procedures considered are consistent and asymptotically normally distributed. A robust procedure to select the smoothing parameter is also discussed.
Keywords:Asymptotic properties   Kernel weights   Missing data   Nonparametric regression   Robust estimation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号