首页 | 本学科首页   官方微博 | 高级检索  
     


Parameter estimation for fractional Poisson processes
Authors:Dexter O. Cahoy  Vladimir V. Uchaikin  Wojbor A. Woyczynski
Affiliation:1. Department of Mathematics and Statistics, Louisiana Tech University, USA;2. Department of Theoretical and Mathematical Physics, Ul''yanovsk State University, Russia;3. Department of Statistics, and Center for Stochastic and Chaotic Processes in Science and Technology, Case Western Reserve University, USA
Abstract:The paper proposes a formal estimation procedure for parameters of the fractional Poisson process (fPp). Such procedures are needed to make the fPp model usable in applied situations. The basic idea of fPp, motivated by experimental data with long memory is to make the standard Poisson model more flexible by permitting non-exponential, heavy-tailed distributions of interarrival times and different scaling properties. We establish the asymptotic normality of our estimators for the two parameters appearing in our fPp model. This fact permits construction of the corresponding confidence intervals. The properties of the estimators are then tested using simulated data.
Keywords:Fractional Poisson process   Heavy tails   Limit distributions   Confidence intervals   Parameter estimation   Method of moments
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号