首页 | 本学科首页   官方微博 | 高级检索  
     


Semiparametric Bayesian inference for regression models
Authors:Yodit Seifu  Thomas A. Severini  Martin A. Tanner
Abstract:This paper presents a method for Bayesian inference for the regression parameters in a linear model with independent and identically distributed errors that does not require the specification of a parametric family of densities for the error distribution. This method first selects a nonparametric kernel density estimate of the error distribution which is unimodal and based on the least-squares residuals. Once the error distribution is selected, the Metropolis algorithm is used to obtain the marginal posterior distribution of the regression parameters. The methodology is illustrated with data sets, and its performance relative to standard Bayesian techniques is evaluated using simulation results.
Keywords:Bayesian inference  kernel density estimate  Metropolis algorithm  non-parametric  regression parameters
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号