首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
一类新的2+1维非线性发展方程及其解的对合表示
作者姓名:
刘亚峰
刘炜
作者单位:
石家庄铁道大学 数理系;石家庄铁道大学 数理系
摘 要:
由线性谱问题的相容性条件得到一个新的2+1维非线性发展方程。利用位势函数与特征函数之间的约束获得Bargmann系统,通过Euler Lagrange方程及Legendre变换构造Jacobi Ostrogradsky坐标。应用Lax对非线性化方法,生成了一个新的有限维Hamilton正则系统。最后证明其为Liouville意义下完全可积系统,并得到发展方程族的对合表示。
关 键 词:
谱问题; Lax对非线性化;Bargmann系统;可积系统;对合表示
收稿时间:
2013-07-11
点击此处可从《石家庄铁道学院学报(社会科学版)》浏览原始摘要信息
点击此处可从《石家庄铁道学院学报(社会科学版)》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号