首页 | 本学科首页   官方微博 | 高级检索  
     


Intrinsic Priors for Model Selection Using an Encompassing Model with Applications to Censored Failure Time Data
Authors:Kim  Seong W.  Sun  Dongchu
Affiliation:(1) Department of Statistics, The University of Missouri, Columbia, MO 65211, USA
Abstract:In Bayesian model selection or testingproblems one cannot utilize standard or default noninformativepriors, since these priors are typically improper and are definedonly up to arbitrary constants. Therefore, Bayes factors andposterior probabilities are not well defined under these noninformativepriors, making Bayesian model selection and testing problemsimpossible. We derive the intrinsic Bayes factor (IBF) of Bergerand Pericchi (1996a, 1996b) for the commonly used models in reliabilityand survival analysis using an encompassing model. We also deriveproper intrinsic priors for these models, whose Bayes factors are asymptoticallyequivalent to the respective IBFs. We demonstrate our resultsin three examples.
Keywords:censored survival data  encompassing model  intrinsic Bayes factor  intrinsic priors  noninformative priors  power law process
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号