首页 | 本学科首页   官方微博 | 高级检索  
     


A Bayesian nonparametric estimator based on left censored data
Authors:Stephen Walker  Pietro Muliere
Affiliation:(1) Imperial College, London, UK;(2) Dipartimento di Economica Politica e Metodi Quantitativi, Università di Pavia, Via S. Felice, 27100 Pavia, Italy
Abstract:Summary This paper introduces a Bayesian nonparametric estimator for an unknown distribution function based on left censored observations. Hjort (1990)/Lo (1993) introduced Bayesian nonparametric estimators derived from beta/beta-neutral processes which allow for right censoring. These processes are taken as priors from the class ofneutral to the right processes (Doksum, 1974). The Kaplan-Meier nonparametric product limit estimator can be obtained from these Bayesian nonparametric estimators in the limiting case of a vague prior. The present paper introduces what can be seen as the correspondingleft beta/beta-neutral process prior which allow for left censoring. The Bayesian nonparametyric estimator is obtained as in the corresponding product limit estimator based on left censored data.
Keywords:Beta-neutral process  Dirichlet, process  Neutral to the left process  Neutral to the right process  Product limit estimator
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号