首页 | 本学科首页   官方微博 | 高级检索  
     


An empirical comparison of EM,SEM and MCMC performance for problematic Gaussian mixture likelihoods
Authors:Dias  José G.  Wedel  Michel
Affiliation:(1) Department of Quantitative Methods, Instituto Superior de Ciências do Trabalho e da Empresa—ISCTE, Av. das Forças Armadas, Lisboa, 1649–026, Portugal;(2) The University of Michigan Business School, 701 Tappan Street, MI, 48109 Ann Arbor, USA
Abstract:We compare EM, SEM, and MCMC algorithms to estimate the parameters of the Gaussian mixture model. We focus on problems in estimation arising from the likelihood function having a sharp ridge or saddle points. We use both synthetic and empirical data with those features. The comparison includes Bayesian approaches with different prior specifications and various procedures to deal with label switching. Although the solutions provided by these stochastic algorithms are more often degenerate, we conclude that SEM and MCMC may display faster convergence and improve the ability to locate the global maximum of the likelihood function.
Keywords:Gaussian mixture models  EM algorithm  SEM algorithm  MCMC  label switching  loss functions  conjugate prior  hierarchical prior
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号