首页 | 本学科首页   官方微博 | 高级检索  
     


Choice of the primary analysis in longitudinal clinical trials
Authors:Craig H. Mallinckrodt  John G. Watkin  Geert Molenberghs  Raymond J. Carroll
Abstract:Missing data, and the bias they can cause, are an almost ever‐present concern in clinical trials. The last observation carried forward (LOCF) approach has been frequently utilized to handle missing data in clinical trials, and is often specified in conjunction with analysis of variance (LOCF ANOVA) for the primary analysis. Considerable advances in statistical methodology, and in our ability to implement these methods, have been made in recent years. Likelihood‐based, mixed‐effects model approaches implemented under the missing at random (MAR) framework are now easy to implement, and are commonly used to analyse clinical trial data. Furthermore, such approaches are more robust to the biases from missing data, and provide better control of Type I and Type II errors than LOCF ANOVA. Empirical research and analytic proof have demonstrated that the behaviour of LOCF is uncertain, and in many situations it has not been conservative. Using LOCF as a composite measure of safety, tolerability and efficacy can lead to erroneous conclusions regarding the effectiveness of a drug. This approach also violates the fundamental basis of statistics as it involves testing an outcome that is not a physical parameter of the population, but rather a quantity that can be influenced by investigator behaviour, trial design, etc. Practice should shift away from using LOCF ANOVA as the primary analysis and focus on likelihood‐based, mixed‐effects model approaches developed under the MAR framework, with missing not at random methods used to assess robustness of the primary analysis. Copyright © 2004 John Wiley & Sons, Ltd.
Keywords:missing data  longitudinal data  maximum likelihood  mixed‐effects models
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号