首页 | 本学科首页   官方微博 | 高级检索  
     


Estimating the error variance in nonparametric regression by a covariate-matched u-statistic
Authors:Ursula U. Müller  Anton Schick  Wolfgang Wefelmeyer
Affiliation:1. Fachbereich 3: Mathematik und Informatik , Universit?t Bremen , Postfach 330 440, Bremen, 28334, Germany;2. Department of Mathematical Sciences , Binghamton University , Binghamton, NY, 13902-6000, USA;3. Fachbereich 6 Mathematik , Universit?t Siegen , Walter-Flex-Str. 3, Siegen, 57068, Germany
Abstract:For nonparametric regression models with fixed and random design, two classes of estimators for the error variance have been introduced: second sample moments based on residuals from a nonparametric fit, and difference-based estimators. The former are asymptotically optimal but require estimating the regression function; the latter are simple but have larger asymptotic variance. For nonparametric regression models with random covariates, we introduce a class of estimators for the error variance that are related to difference-based estimators: covariate-matched U-statistics. We give conditions on the random weights involved that lead to asymptotically optimal estimators of the error variance. Our explicit construction of the weights uses a kernel estimator for the covariate density.
Keywords:Empirical Estimator  i.i.d. Representation  Efficient Estimator  Kernel Estimator  Relative Mean Square Errors  Cross Validation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号