首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A robust principal component analysis
Authors:Mohamed Ibazizen  Jacques Dauxois
Institution:1. Département de mathématiques , Université Mouloud Mammeri , 15000, Tizi-Ouzou, Algérie;2. Laboratoire de Statistique et probabilités , Université Paul Sabatier 118 , route de Narbonne, 31062, Toulouse Cedex, France
Abstract:This work is concerned with robustness in Principal Component Analysis (PCA). The approach, which we adopt here, is to replace the criterion of least squares by another criterion based on a convex and sufficiently differentiable loss function ρ. Using this criterion we propose a robust estimate of the location vector and introduce an orthogonality with respect to (w.r.t.) ρ in order to define the different steps of a PCA. The influence functions of a vector mean and principal vectors are developed in order to provide method for obtaining a robust PCA. The practical procedure is based on an alternative-steps algorithm.
Keywords:Influence function  Principal component analysis  Robustness  ρ-orthogonality
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号