首页 | 本学科首页   官方微博 | 高级检索  
     


Construction of optimal designs in random coefficient regression models
Authors:J. Gladitz  J. Pilz
Affiliation:1. Forsehungsbereieh Mathematik/Kybernetik , AdW der DDR , Rudower Chaussee 5, Berlin, DDR - 1199;2. Sektion Mathematik , Bergakademie Freiberg , B.-von Cotta-Str. 2, Freiberg, DDR - 9200
Abstract:We consider the problem of optimal experimental design in random coefficient regression models with respect to a quadratic loss function. By application of WHITTLE'S general equivalence theorem we obtain the structure of optimal designs. An alogrithm is given which allows, under certain assumptions, the construction of the information matrix of an optimal design. Moreover, we give conditions on the equivalence of optimal designs with respect to optimality criteria which are analogous to usual A-D- and _E/-optimality.
Keywords:Bayesian linear models  Linear BAYES estimator  Information matrix  Experimental design  Structure of optimal designs  Equivalence theorems
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号