首页 | 本学科首页   官方微博 | 高级检索  
     


Binary quantile regression and variable selection: A new approach
Authors:Katerina Aristodemou  Jian He
Affiliation:1. Brunel University London, Uxbridge, Middlesex, UK;2. Shihezi University, Shihezi Shi, Xinjiang Weiwuerzizhiqu, China
Abstract:In this paper, we propose a new estimation method for binary quantile regression and variable selection which can be implemented by an iteratively reweighted least square approach. In contrast to existing approaches, this method is computationally simple, guaranteed to converge to a unique solution and implemented with standard software packages. We demonstrate our methods using Monte-Carlo experiments and then we apply the proposed method to the widely used work trip mode choice dataset. The results indicate that the proposed estimators work well in finite samples.
Keywords:Adaptive lasso  binary regression  iteratively reweighted least squares  quantile regression  smoothed maximum score estimator  variable selection  work trip mode choice
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号