首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian analysis of a linear mixed model with AR(p) errors via MCMC
Authors:M. A. Alkhamisi   Ghazi Shukur
Affiliation:1. Mathematics Department , Salahaddin University , Kurdistan Region, Iraq;2. Department of Economics and Statistics , V?xj? University , Sweden
Abstract:We develop Bayesian procedures to make inference about parameters of a statistical design with autocorrelated error terms. Modelling treatment effects can be complex in the presence of other factors such as time; for example in longitudinal data. In this paper, Markov chain Monte Carlo methods (MCMC), the Metropolis-Hastings algorithm and Gibbs sampler are used to facilitate the Bayesian analysis of real life data when the error structure can be expressed as an autoregressive model of order p. We illustrate our analysis with real data.
Keywords:Linear mixed model  autoregressive process  Metropolis-Hastings algorithm  Gibbs sampling  Bayesian statistics  autocorrelation  repeated measurement designs
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号