Improved shrinkage estimators for the mean vector of a scale mixture of normals with unknown variance |
| |
Authors: | Gina Bravo Brenda Macgibbon |
| |
Abstract: | The problem of estimating the mean θ of a not necessarily normal p-variate (p > 3) distribution with unknown covariance matrix of the form σ2A (A a known diagonal matrix) on the basis of ni > 2 observations on each coordinate Xt (1 < i < p) is considered. It is argued that the class of scale (or variance) mixtures of normal distributions is a reasonable class to study. Assuming the loss function is quadratic, a large class of improved shrinkage estimators is developed in the case of a balanced design. We generalize results of Berger and Strawderman for one observation in the known-variance case. This methodology also permits the development of a new class of minimax shrinkage estimators of the mean of a p-variate normal distribution for an unbalanced design. Numerical calculations show that the improvements in risk can be substantial. |
| |
Keywords: | James-Stein estimators minimax scale mixtures unknown variance |
|